# Program to find the length of Latus Rectum of a Hyperbola

Given two integers **A** and **B**, representing the length of the semi-major and semi-minor axes of a Hyperbola, the task is to find the length of the latus rectum of the hyperbola.

**Examples:**

Input:A = 3, B = 2Output:2.66666

Input:A = 6, B = 3Output:3

**Approach:** The Latus Rectum of a hyperbola is the focal chord perpendicular to the major axis and the length of the Latus Rectum is equal to (Length of the minor axis )^{2}/(length of major axis).

Follow the steps below to solve the given problem:

- Find the length of the major axis of the hyperbola and store it in a variable, say
**major**. - Find the length of the minor axis of the hyperbola and store it in a variable, say
**minor**. - After completing the above steps, print the value of
**(minor*minor)/major**as the resultant length of the Latus Rectum.

Below is the implementation of the above approach:

## C++

`// C++ program for the above approach` `#include <iostream>` `using` `namespace` `std;` `// Function to calculate the length of` `// the latus rectum of a hyperbola` `double` `lengthOfLatusRectum(` `double` `A,` ` ` `double` `B)` `{` ` ` `// Store the length of major axis` ` ` `double` `major = 2.0 * A;` ` ` `// Store the length of minor axis` ` ` `double` `minor = 2.0 * B;` ` ` `// Store the length of the` ` ` `// latus rectum` ` ` `double` `latus_rectum = (minor * minor)` ` ` `/ major;` ` ` `// Return the length of the` ` ` `// latus rectum` ` ` `return` `latus_rectum;` `}` `// Driver Code` `int` `main()` `{` ` ` `double` `A = 3.0, B = 2.0;` ` ` `cout << lengthOfLatusRectum(A, B);` ` ` `return` `0;` `}` |

## Java

`// Java program for the above approach` `import` `java.io.*;` `class` `GFG{` ` ` `// Function to calculate the length of` `// the latus rectum of a hyperbola` `static` `double` `lengthOfLatusRectum(` `double` `A,` ` ` `double` `B)` `{` ` ` ` ` `// Store the length of major axis` ` ` `double` `major = ` `2.0` `* A;` ` ` `// Store the length of minor axis` ` ` `double` `minor = ` `2.0` `* B;` ` ` `// Store the length of the` ` ` `// latus rectum` ` ` `double` `latus_rectum = (minor * minor) / major;` ` ` `// Return the length of the` ` ` `// latus rectum` ` ` `return` `latus_rectum;` `}` `// Driver Code` `public` `static` `void` `main(String[] args)` `{` ` ` `double` `A = ` `3.0` `, B = ` `2.0` `;` ` ` ` ` `System.out.println(lengthOfLatusRectum(A, B));` `}}` `// This code is contributed by Dharanendra L V.` |

## Python3

`# Python program for the above approach` `# Function to calculate the length of` `# the latus rectum of a hyperbola` `def` `lengthOfLatusRectum(A,B):` ` ` ` ` `# Store the length of major axis` ` ` `major ` `=` `2.0` `*` `A` ` ` ` ` `# Store the length of minor axis ` ` ` `minor ` `=` `2.0` `*` `B` ` ` ` ` `# Store the length of the` ` ` `# latus rectum` ` ` `latus_rectum ` `=` `(minor ` `*` `minor) ` `/` `major` ` ` ` ` `# Return the length of the` ` ` `# latus rectum` ` ` `return` `latus_rectum` `# Driver Code` `A ` `=` `3.0` `B ` `=` `2.0` `print` `(` `round` `(lengthOfLatusRectum(A, B),` `5` `))` `# This code is contributed by avanitrachhadiya2155` |

## C#

`// C# program for the above approach` `using` `System;` `class` `GFG` `{` `// Function to calculate the length of` `// the latus rectum of a hyperbola` `static` `double` `lengthOfLatusRectum(` `double` `A,` ` ` `double` `B)` `{` ` ` ` ` `// Store the length of major axis` ` ` `double` `major = 2.0 * A;` ` ` `// Store the length of minor axis` ` ` `double` `minor = 2.0 * B;` ` ` `// Store the length of the` ` ` `// latus rectum` ` ` `double` `latus_rectum = (minor * minor)` ` ` `/ major;` ` ` `// Return the length of the` ` ` `// latus rectum` ` ` `return` `latus_rectum;` `}` `// Driver Code` `public` `static` `void` `Main ()` `{` ` ` `double` `A = 3.0, B = 2.0;` ` ` `Console.WriteLine(lengthOfLatusRectum(A, B));` `}}` `// This code is contributed by ukasp.` |

## Javascript

`<script>` `// Javascript program for the above approach` ` ` `// Function to calculate the length of` `// the latus rectum of a hyperbola` `function` `lengthOfLatusRectum(A, B)` `{` ` ` ` ` `// Store the length of major axis` ` ` `var` `major = 2.0 * A;` ` ` `// Store the length of minor axis` ` ` `var` `minor = 2.0 * B;` ` ` `// Store the length of the` ` ` `// latus rectum` ` ` `var` `latus_rectum = (minor * minor) / major;` ` ` `// Return the length of the` ` ` `// latus rectum` ` ` `return` `latus_rectum;` `}` `// Driver Code` `var` `A = 3.0, B = 2.0;` `document.write(lengthOfLatusRectum(A, B));` `// This code is contributed by 29AjayKumar` `</script>` |

**Output:**

2.66667

**Time Complexity:** O(1)**Auxiliary Space:** O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend **live classes **with experts, please refer **DSA Live Classes for Working Professionals **and **Competitive Programming Live for Students**.